Raw Data-Based Internal SAR Instrument Calibration

Marwan Younis, Felipe Queiroz de Almeida, Sigurd Huber, Michele Martone, Michelangelo Villano, and Gerhard Krieger

Microwaves and Radar Institute
German Aerospace Center (DLR)
The SAR antenna consists of 448 radiators (antenna elements) for V and H polarization divided into 8 (azimuth) tiles.

Within the tile, the receive signals of 4x2 radiators are combined (analog combiner) and then digitized resulting in 7 digital data streams.

On-board the data streams are further combined forming time varying beams (SCORE/sweep-SAR operation).
Schematic of Instrument as Relevant for Calibration
Schematic of Instrument as Relevant for Calibration
Raw Data Driven Calibration
Instrument Schematic for Data-Based Calibration

- Utilize the received raw SAR data to estimate the phase and amplitude offset between the channels (channel alignment).
- Applied on-board (real time), or on-ground provided that the channels' data is available.
- Based on comparing the signals of the different channels.
- May be extended to yield an elevation/azimuth dependent correction (channel balancing).
Clutter Based Calibration

Properties of Spatial Correlation Func.

Under certain conditions –applicable for SAR– the spatial correlation function [1]:

- depends only on the separation and not on the absolute position
- is independent on the scene for homogeneous scenes

Clutter Based Calibration

Properties of Spatial Correlation Func.

Under certain conditions – applicable for SAR – the spatial correlation function:

- depends only on the separation and not on the absolute position
- is independent on the scene for homogeneous scenes
Suitability for Calibration in Elevation and Azimuth

Elevation Correlation Function

Elevation correlation function with separation $[\lambda]$

Azimuth Correlation Function

Azimuth correlation function with separation $[\lambda]$
Suitability for Calibration in Elevation and Azimuth

Azimuth Correlation Function
- The minimum separation is given by the antenna element size
- Smaller elements result in a higher correlation
- Which also means that the signals contain more redundancies
- Elevation channels are better suited for clutter based calibration

Elevation Correlation Function

Data Based Calibration Approaches
- Clutter based calibration assumes a statistically uniform clutter like scene, i.e. are limited to the signal statistics
- Other methods based on contrast maximization utilizing e.g. entropy or p-norm as metric [2]

Why use Data-Based Calibration?
Includes Complete Signal Path
Measures Coupling Errors

Causes for Coupling

- Coupling can occur at various points in the signal path: cal-components, switches, antenna, or SAR echo return.
- Coupling effects the calibration accuracy
Difference in ADC Load between Cal and SAR Signals

Standard deviation of phase error at ADC output versus the input signal power (≈ SNR)

- 6-bits
- 8-bits
- 10-bits
- 12-bits

Cal signal

SAR signal

8.4dB

DBU-to-CE Calibration

- By successively switching off all TRIMs but one
- The input signal power will be different from the SAR echo, resulting in an ADC error.
Reflector Antenna versus Direct Radiating Arrays

Direct Radiating Array
- Each antenna element measures a common wide angular segment; a single point target is seen by all elements.
- Patterns are separable (elevation and azimuth).

Reflector Antenna
- Each feed illuminates a distinct (narrow) angular segment; any point target is seen by few feeds.
- Patterns are non-separable (elevation and azimuth); complicated external calibration (elevation).
Reflector Antenna versus Direct Radiating Arrays

Direct Radiating Array
- Each antenna element measures a common wide angular segment; a single point target is seen by all elements.
- Patterns are separable (elevation and azimuth).
- Internal calibration measures all but short harness and radiators antenna elements.

Reflector Antenna
- Each feed illuminates a distinct (narrow) angular segment; any point target is seen by few feeds.
- Patterns are non-separable (elevation and azimuth);
 complicated external calibration (elevation).
- Internal calibration does not cover feed, reflector, nor feed-to-reflector path.
Calibration Errors
Data Driven Calibration Concept

Simulate SAR Signal Introduce Phase Error Cross-Correlation Error Estimates Residual Error Matrix
Residual Error Matrix

Residual phase error after data driven calibration vs. element separation

Residual phase error [degree]

separation in elements
Effect of Pulse Extension Loss on Calibration
The Pulse Extent

Non-Vanishing Pulse Extent

- An effect is the extent of the SAR pulse on the ground [3].
- The area contributing to the reflected (echo) power at any instance of time
- Proportional to the pulse duration divided by the sinus of the incidence angle

Angular pulse extent to beamwidth ratio versus the look angle for a pulse length of 50μsec

PEL and Modulation Depth

\[PEL(\vartheta) = \frac{1}{\chi \vartheta} \int_{\vartheta_0 - \chi \vartheta/2}^{\vartheta_0 + \chi \vartheta/2} |C_R(\vartheta, \vartheta_0)|^2 \, d\vartheta \]

\[M(\vartheta) = \frac{|C_R(\vartheta)|^2 - |C_R(\vartheta + \chi \vartheta/2)|^2}{|C_R(\vartheta)|^2} \]

PEL Impact

- The PEL = 0.65 dB and M = 39% at near range
- If not corrected this is an absolute calibration error
- Is not directly measurable
PEL in the Presence of Steering Error

Comments

• A constant steering error causes a PEL change which varies over the swath.
• TRM phase/amplitude errors can change the PEL even without steering error, because they influence the pattern shape.
• The PEL is not fully captured by the radar equation.

New Performance Parameters should be considered for Multi-Channel Calibration.
The conventional calibration methods currently used for spaceborne SAR systems may not be extended to multi-channel systems.

Raw data driven calibration includes:
- radiator and coupling
- the SAR Rx signal itself characterizes the instrument
- Requires data link between DBUs

New data driven approaches have been investigated and are promising.

It is suggested that raw data driven calibration will supplement the current methods.